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Abstract —This paper reviews one of the most important general meth-
ods for solving electromagnetic-field problems, namely, the moment method.
It begins with a brief mathematical foundation of the general method.
Then, the various specializations are described, accompanied with relevant
references to illustrate the pitfalls and shortcomings, as well as the ad-
vantages, as compared to other methods. Deterministic and eigenvalue
problems are both discussed separately. Finally, two advanced techniques
which have been found to be among the most efficient ones for solving
matrix equations resulting from the moment method, namely, the conjugate
gradient and the pseudo-inverse, are described. A version of their algorithm
which is easily programmable on computer is also presented.

I. INTRODUCTION

ITH THE EVER-INCREASING complexity of com-

munication systems, there has been a need for en-
gineers to predict the behavior of such systems by means of
computer simulations. As a result, the equations involved
in the mathematical description of electromagnetic quanti-
ties, which are of interest in most cases, have become more
complex. Consequently, more sophisticated numerical
methods have been developed to solve electromagnetic
problems. These methods are gaining greater and greater
success with the constant development of new powerful
digital computers.

A theory is meant to extrapolate observations in order to
make some prediction. As far as engineers are concerned, a
theory is relevant if it can produce numbers in a finite
number of steps performed in a reasonable period of time
and with sufficient accuracy, taking into account the fact
that computers have finite word length. Very elegant theo-
ries have been known for decades but had been useless for
engineers owing to the lack of appropriate numerical al-
gorithms to produce accurate numbers.

In recent years, most of those theories have received
renewed interest with the developments of powerful high-
speed computers which have made their numerical solu-
tions within reach. Simultaneously, more sophisticated al-
gorithms have been developed to obtain more accurate
numbers while decreasing the number of operations.

Generally, before producing numbers, two steps are nec-
essary. First, the original functional equations must be
transformed into structures (such as systems of equations)
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that can be handled by computers. Then, appropriate
techniques must be used to solve numerically the new form
of equations hence produced. The degrees of difficulty that
may be encountered in both steps are somehow interdepen-
dent. Indeed, if an efficient algorithm that transforms the
functional equations is found, the size of the systems to be
solved may be considerably decreased. However, efficient
algorithms may require more computer time to numerically
determine the various coefficients of the new form of
equations.

This paper is a critical inspection of a general method
used extensively in electromagnetic-field problems, namely,
the method of moments. Shortcomings and pitfalls of the
method will be discussed and some possible improvements
proposed. New methods which are gaining interest to solve
linear systems of equations that follow from the method of
moments will be outlined, as solutions to such systems are
an important step towards the production of numbers
which are, probably, of most interest for engineers.

This paper is intended as an introduction for those
totally unfamiliar with numerical methods, as well as for
those with some experience in the field. It was felt by the
author that it was more advisable to discuss the different
specializations of the general method of moments, rather
than to survey specific examples. Basic mathematical con-
cepts are introduced to provide some help for further
reading of the relevant literature. References found to be
most useful for the specific examples are listed in the
bibliography and the reader is urged to consult the papers
relevant to his or her interest.

II. MEgTHOD OF MOMENTS

Most of the solutions to linear functional equations can
be interpreted in terms of projections onto subspaces of
functional spaces. For computational reasons, these sub-
spaces must be finite dimensional. For theoretical work,
they may be infinite dimensional. The idea of transforming
linear functional equations to linear matrix equations is
rather old. Galerkin, a Russian engineer, developed the
method, which carries his name, around 1920. It was a
specialization of the more general method of moments
which was presented later by R. F. Harrington in 1967 [1].

Most of the electromagnetic problems can be expressed
under the form of a linear functional equation. One gener-
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ally classifies electromagnetic problems in two categories,
namely, deterministic and eigenvalue problems. In the first
category, the linear functional equation enables one to
determine the electromagnetic quantity directly. In the
second category, parameters for which nontrivial solutions
exist are found first. Then, the corresponding solutions
called eigensolutions are determined. Both categories of
problems can be handled by the method of moments.

A. Deterministic Problems

First, consider a deterministic problem for which the
-corresponding functional is given by

L-f=y (1)
where L is any linear operator, f is the unknown function
to be determined, and y is the input also called the
excitation. The space spanned by all functions resulting
from the operation L is called the range of L. The set of
all functions on which L can operate define the domain
of L.

One needs an inner product { ) associated with the
problem, which must satisfy

(,0) = (v, uy*
(o Bo. £y =alu, £y +B(v, [
(f.£y>0 )

f {(f,f>=0then f=0
where « and B are scalars, f, ¥, v any functions, and *
denotes the complex conjugate. For instance, a suitable
inner product for function spaces can be given by the
functional

(u,v) =fQuu*dsz (3)

The above integral is performed over any N-dimensional

subspace, depending on the application. Equation (3) is
called an unweighted or standard inner product and it
indicates a “projection” of u in the “direction” of v, from
which the similarity between vector and function space
becomes obvious. In some situations, one needs the adjoint
operator of L and its domain defined by

(Lf, py={f. L) 4)

for all f in the domain of L. An operator is self-adjoint if
L% = L and the domain of L is that of L. Self-adjointness
depends strongly on the associated boundary conditions
and also on the selection of an appropriate inner product.
For instance, self-adjointness is largely determined by the
boundary conditions in the case of differential operators
[2]. However, for integral operators, self-adjointness is as-
sured if the kernel of the integral possesses some symmetric
properties [3].

The operator L is said to be positive /negative definite if

(Lf,[>20 (5)

for any f # 0 in the domain of L. The properties of the
solution of (1) depend strongly on the properties of the
operator L. For instance, if the operator is positive defi-
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nite, the solution of (1) is unique. Indeed, suppose that u
and v are two solutions of (1) such that L-u=y and
L-v=y. Then, by virtue of the linearity of L, w=u— v is
also a solution. Therefore, Lw = 0, and, since L is positive
definite, w must be zero, yielding u = v.

Equations such as (1) can be analytically solved in a very
few cases. Most of the time, they require methods that
transform the original equation in the form of linear equa-
tion systems. The most well known are variational, finite
difference, and moment methods. The first two methods
are important, and, in certain cases, may have some ad-
vantage. However, for the sake of consistency, they will not
be discussed here.

First of all, let us express the unknown function in terms
of basis or expansion functions f, in the domain of L

/= Edjfj' (6)
N

The set of basis functions can be finite or infinite. In the
latter case, since in practical problems the summation must
be truncated, the solution will be an approximation of the
true solution. This is the case for orthogonal developments
such as Fourier series. Using the property of linearity of L,
(1) can now be written as

Yo,Lf=y. (7)
N

If a set of weighting or testing functions w, is chosen in
the range of the operator L and the inner product of both
sides of (7) is taken for each w,, the original functional
equation becomes a set of linear equations that can be
written in the matrix form

[L]é=y
where
Lij=<wi’ij>
yi={w;, ) (8)
and
67=[a1,a2,"',0£,"']T

in which T indicates transposition. If the matrix [L] is
regular, [ L]~ ! exists, and the e,’s are given by

a=[L]"'y )

and the solution is found using (6). The moment method
can be interpreted as an error-minimization procedure with
the concept of linear spaces. Let R(L) be the range of the
operator L. The right-hand side of (8) is the orthogonal
projection of the subspace of R(L) spanned by the oper-
ation of L on the exact solution f, i.e., the y, onto the
subspace W spanned by the w,’s. The left-hand side of (8)
is the projection of the subspace spanned by the operations
Lf, onto W. The moment method equates these two projec-
tions (see Fig. 1). Since the error (also called weighted
residual) is orthogonal to the projection, it is of the second
order and, consequently, the method is an error-minimiza-
tion procedure.
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Tllustration of the method of moments in the function space.

Fig. 1.

There are infinitely many possible sets of basis and
weighting functions. The most important task of the en-
gineer for any particular problem is the selection of an
appropriate set of f’s and w,’s. Although the choice of
these functions is specific to each problem, one can state
rules that can be applied generally to optimize the chance
of success by obtaining accurate results in a minimum time
and computer memory storage. First of all, they should
form a set of linearly independent functions. Second, using
(6), the f’s should approximate the (expected) function f
reasonably well. Finally, the w,’s should be in R(L) and so
chosen that the inner products {w;, y) depend on rela-
tively. independent properties of y. Some additional factors
may influence the selection, such as

i) the desired accuracy of the solution,

ii) the size of the matrix [ L] to be inverted,
iii) the realization of a well-behaved matrix [ L],
iv) the ease of evaluating of the inner products.

The various selections of the w,’s lead to the different
specializations of the moment method.

1) Galerkin’s Method: In cases where the domain of L is
identical to the domain of L“ one can select w, = fj, which
leads to the well-known Galerkin’s method. For self-
adjoint operators, the condition is automatically met and
they are best suited for this method because, according to
(4), the resulting matrix [ L] is symmetrical. This may have
some numerical advantage for solving the corresponding
linear system of equations. However, the elements of the
matrix [ L] can be more difficult to evaluate than in other
methods. This may outweigh the advantage of having a
symmetric matrix [L].

The Galerkin’s method has been used extensively in
electromagnetic problems. Numerous examples of applica-
tion are given in {4]. This method has been found to yield
accurate results with rapid convergence, as compared to
others, in the case of low-order solutions, i.c., when few
expansion functions are required.

Galerkin’s method is also involved in a new method
which is gaining interest in transmission-line problems,
namely, the spectral-domain method [5]. In this approach,
the coupled integral equations, relating field and current,
which typically appear in the space domain, are expressed
in the spectral domain via Fourier transform. As a result,
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the original equations are transformed into algebraic equa-
tions and convolutions into simple products. The applica-
tion of the boundary conditions yields a system of linear
algebraic equations relating the Fourier transform of both
unknowns, respectively, the electric field at diélectric inter-
face, and the current densities in the conducting strips.
Finally, the application of the Galerkin’s method in the
spectral domain produces an homogeneous eigenvalue ma-
trix equation. Equating the determinant of the matrix to
zero leads to the solution of the propagation constants for
the dominant and higher order modes [6]. .

2) Subsection and Point- Matching Method: For higher
order solutions, i.e., when a large number of expansion
functions is required to approximate the unknown func-
tion, there may be a certain advantage in using weighting
functions that render the inner products, involved in the
moment method, easy to determine. This is achieved by
choosing the w,’s equal to Dirac’s functions. Indeed, by
virtue of the property of this function, the inner product
which involves an integral in the function spaces, becomes
trivial. This specialization of the moment method is called
the point matching or collocation method. The elements of
the matrix [ L] and the vector ¥, hence, become

l;j= ij{?=7,.
=57 (10)

This is equivalent to enforce (7) at various points of
interest, generally where boundary conditions must be met.
The main advantage of this method resides in the ease with
which the matrix elements are computed as compared to
other specializations of the moment method. The major
disadvantage is that for low-order solutions, the accuracy
and the convergence of the solution generally depend on
the location of the points at which (7) is matched (see, for
example, [7]). For higher order solutions, Galerkin’s method
has been found to give better results and faster conver-
gence in the majority of cases. However, equidistant points,
in this case, give satisfactory results for the point-matching
method.

Another important aspect is that the point-matching
method has been proved inaccurate when the operations
Lf; yield symbolic functions such as Dirac’s functions. This
can be explained by the fact that the inner product of two
distributions such as Dirac’s functions is not defined [8].
On the other hand, integral operators do not produce such
functions for practical problems. Consequently, they are
better suited to be used with the point-matching method. A
typical illustration is found in [9] in which the method is
used for finding scattering fields produced by infinitely
long dielectric cylinders with transverse magnetic irradia-
tion. The operator is integral and the method yields excel-
lent results. On the other hand, for transverse electric
irradiation, the operator involved is integro-differential
and, since pulse functions as basis are used, the results are
less accurate [10]. ; v ‘

For problems lacking symmetry, it is difficult to find
basis functions that are defined over the entire domain of
the solution, and they would imply rather involved calcula-
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Fig. 2. Examples of subsectional basis and corresponding approximated
function.

tions of the inner products. Consequently, it is more judi-
cious to approximate the solution by basis functions which
are defined only over subsections of the domain of f. The
point-matching method is often used in conjunction with
the subsectional basis. The main advantage is a certain
facility to compute the elements of the matrix [ L] provided
that the basis function be simple. For instance, the un-
known function can be approximated using step or triangu-
lar functions (see Fig. 2). Care must be taken regarding the
subsectional basis. The basis functions y should be in the
domain of the operator L. In addition, the point-matching
procedure should not be used if the operation of L on the
/;’s yields symbolic functions, for reasons stated before.
For instance, step functions should not be used at all when
second-order differential operators are involved. Also, they
should not be used for first-order differential operators if
point-matching is intended.

The method would be very limited if such simple basis
functions could not be used for this type of operators,
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which are often encountered in electromagnetic problems.
Fortunately, the differential operators can always be ap-
proximated using a finite-difference procedure which is
discussed in the next section. Another possibility is to
extend the original domain of the operator such that it can
operate on a wider class of functions without changing the
operation in the original domain [4]. For problems involv-
ing integral operators, the method yields reasonably good
results. However, the advantage inherent to the method
described above can be outweighed by the size of the
system. Indeed, in order to approximate the solution rea-
sonably well, a rather large number of subsections is neces-
sary. Consequently, the method is difficult to be applied in
cases for which the wavelength is relatively short as com-
pared to the dimension of the problem.

Many applications that use point-matching in conjunc-
tion with the subsection method can be found in the
literature [4], [11]-[14]. They most frequently deal with
scattering problems. For instance, an interesting compari-
son between Galerkin’s and the point-matching methods
for different choices of basis functions can be found in [11]
for microstrip antenna problems. It is found that triangular
expansions do not give significant improvement as com-
pared to pulse functions. Three-dimensional problems can
also be approached with the point-matching and subsec-
tion methods [12]. The electric field is expended by 3-D
pulses (block model) inside lossy dielectric bodies and
point-matching is applied within each subvolume. The
method is limited to relatively low frequencies. Surface
patch models of conducting objects are proposed in [13] for
determining scattering fields of metallic objects with arbi-
trary shape. The use of triangular patches circumvents the
existence of a fictitious line or point of charges at the edges

.of the subsections [14]. Indeed, by virtue of the continuity

equation, line or point charges may appear at the limit of
subsections if rectangular pulses are used for current ex-
pansion. Potential and field are not defined at those loca-
tions, and anomalies or inconsistencies usually appear in
the solution. Point-matching used with appropriate basis
functions can significantly decrease the order of the system
to be solved. Hagman et al. [15] proposed a plane-wave
correction for scattering problems. The order of the matrix
is reduced by one order of magnitude as compared with
simple pulse functions presented in [9]. However, the com-
putations of the matrix elements are much more involved.

There are various techniques which have been proposed
to improve the point-matching and subsection methods.
For instance, in inverse scattering problems, it has been
found that the solution is highly sensitive to the points of
match [16]. In addition, the problem was found to be
ill-posed. One possibility to rendet the solutions more
accurate and less sensitive to the location of the matching
points is to use least-square techniques [17]. Some con-
straints are enforced on the solution, and fairly good
solutions are obtained even in the presence of realistic
levels of noise in the input function of the integral equa-
tion. Another possibility is to match the equation at a
larger number of points than required by the number of
unknowns and to use least-squares optimization techniques
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to solve the matrix equation [18]. A theoretical treatment of
the so-called overdetermined collocation can be found in
[19].

3) Approximate Operators: It is sometimes convenient to
approximate the operator L. For instance, differential op-
erators can be replaced by finite-difference operators [2],
[4], [20]. This procedure is very useful for point-matching
since it allows one to use discontinuous basis functions,
such as pulses, for problems involving differential oper-
ators. The major inconvenience with the finite-difference
approximation is that, for a given approximation of the
operator, the solution does not converge when the distance
between the mesh nodes decreases. In fact, the correspond-
ing matrix becomes singular [21]. One possibility to obtain
a faster convergence and better accuracy without increas-
ing the number of meshes is to retain higher order terms in
the finite-difference approximation. This automatically im-
plies more computation for the matrix elements. In practi-
cal problems, it is convenient to make the nodes coincide
with the boundaries on which the potential and its deriva-
tive are known. To achieve this, mesh refinement is re-
quired to a level at which the approximation of the
boundaries does not affect the solution. Another way is to
use irregularly spaced nodes [21], [22].

For integral operators, it is sometimes more convenient
to approximate the Kernel of the integral operator [23],
[24] so that analytical integration can take place. If this
cannot be done, since the elements of [ L] generally involve
the integral of Green’s functions which behave poorly at
the origin, numerical methods of integrations such as sin-
gularity extraction or statistical Riemann method of in-
tegration are necessary to evaluate the diagonal matrix
elements. These methods are time consuming if a signifi-
cant number of points are required, and eventually will not
converge. They will not be discussed here.

4) Other Specializations: There are other selections of
w,’s and j;’s which have been used. For instance, step
functions for testing and triangular functions for expansion
functions were used for microstrip antenna problems [11].
Results showed that no significant improvement can be
observed as compared to Galerkin’s method in which pulses
were used for testing and expansion. Therefore, it is not
always judicious to use more elaborate basis functions
because the computations of the matrix elements may
introduce more errors and require more computer time.

Among other possibilities, choosing w, = Lf, yields the
method of the minimum residual called more commonly
the least-squares method. It can be readily seen from Fig. 1
that the error vector (residual) has a minimym norm when
it is orthogonal to the space spanned by the Lf;’s.

B.  Eigenvalue Problems

An eigenvalue equation is an homogeneous equation
which can be written in the general linear case as

Lf = \Mf (11)

where L and M are linear operators. A solution of (11)
exists only for particular values of A called eigenvalues,

associated with the corresponding solutions called ei-
genfunctions, eigenvectors, or eigensolutions. The method
of moments transforms (11) to a matrix eigenvalue equa-
tion that can be solved by appropriate methods. Eigenvalue
problems are important in electromagnetics. Indeed, the
eigenvalues correspond to physical quantities which are of
major importance for engineers, such as cutoff or reso-
nance frequencies of a system. However, the numerical
solution of the matrix eigenvalue equations is, in general,
more complicated than that for deterministic matrix equa-
tions. Iterative schemes such as Jacobi method are most
commonly used [25].

Using the same procedures as described for deterministic
equations, (11) can be written as

2o Lf, =\ o Mf (12)
N N

where the f;’s are in the domain of the operators L and M.
In a similar manner, a set of weighting functions w, is
chosen in the range of I and M and the inner product of
(12) is taken for each w, yielding the matrix system

[L]a=A[M]& (13)

where
my;=w, Mf ).
The above system can have a nontrivial solution only if
det [L]-A[ M]|=0. (14)

The determinant (14) is a polynomial in which roots
A, Ay,- -+, correspond to the eigenvalues of the matrix
equation (13). They approximate the eigenvalues of the
original functional equation (11). The corresponding vec-
tors with coefficients «;,,a,,, - - -, are the eigenvectors of
the matrix equation (13) and

fo= T, (15)
N
approximates each eigenvector of the original functional
equation (11).
If M possesses an inverse, (11) can be written in the
canonical form

M~Lf = Af. (16)

Thus, the matrix [ L] must be multiplied by [M]™! before
applying the method of solutions for eigenvalue matrix
equations. It is worth noticing that if M and M ! arc the
identity operators in (11) and (16), [M]~! is not the
identity matrix in (13) and (14). Indeed, the elements of
[M] involve the scalar product of the weighting functions
and the basis functions.

A judicious choice of w,’s is to select w, = f, (Galerkin’s
procedure). It has been found that Galerkin’s solutions
give eigenvalues higher than the exact values for second-
order differential operators, while they give smaller ei-
genvalues for first-order differential operators [4]. Like
deterministic problems, it is sometimes convenient to ex-
tend the operator. However, when this is applied to ei-
genvalue problems, extraneous eigenvalues appear if the
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basis functions associated with the extended operator
violate the boundary conditions of the problem. For-
tunately, there are several factors which make extraneous
eigenvalues easily recognizable. First of all, they do not
converge like the other eigenvalues. Then, even if the
original operator is positive definite, they may have nega-
tive values because the extended operator is not necessarily
positive definite and, finally, the corresponding eigenvec-
tors tend to be irregular and do not generate eigenfunc-
tions which respect the boundary conditions of the prob-
lem.

III. NEw METHODS FOR SOLVING MATRIX

EQUATIONS

The generation of a linear matrix equation by using any
specialization of the moment method is only a step towards
the production of numbers which are of most interest for
engineers. The last, but not necessarily the least, task is to
solve numerically the matrix equation. For small-order
well-conditioned systems, classical techniques such as
Gauss, diagonal decomposition, and linear iterative tech-
niques are efficient in the majority of cases. They are
discussed in great detail in the literature [26], [27] and will
not be surveyed here. For large systems, the classical
schemes may not yield fast convergence or sufficient accu-
racy. In addition, if the matrix is ill-conditioned (as, for
instance, in the point-matching method), more appropriate
techniques must be applied. Finally, if the system is over-
determined because of the application of redundant data
technique, the least-squares techniques must be used.

There are two methods for solving linear equation sys-
tems that result from the application of the moment method
which are becoming increasingly popular among re-
searchers in electromagnetics, namely, the conjugate gradi-
ent method and the pseudo-inverse technique. The reasons
are the facility with which they can be implemented on a
computer and their capability of handling ill-posed prob-
lems.

A. The Conjugate Gradient Method

Consider the following matrix equation which may result
from the application of the moment method:

[L]a=y (17)
where the above quantities were defined before. It can be
shown [28] that an iterative method, called conjugate gradi-
ent method, can produce the desired solution usually in a
number of steps less than the order of the matrix [L]. The
conjugate gradient method is similar to the steepest descent
which involves the search for the minimum of a functional
in a direction suggested by its negative gradient. A rigorous
mathematical treatment of the method can be found in
[29]. The conjugate gradient is a nonlinear iterative method,
i.e., the new estimate is not a linear function of the past
estimate.

The method starts with an initial guess that generates the
first residual vector given by
7,=[L]d, -

(18)
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and the direction vector

dy=~[L]*7, (19)
where [L]* is the transposed complex conjugate of [L].
Then, the successive iterative steps are given by

an+1 = &n + tn Jn (20)

where

Al
L1,
+1=’_-;z+tn'[L]d—>

(21)

J =_[L] n+1+qndn (22)

where

_MEF7 L
L1+,

in which || - || indicates the norm.

The conjugate gradient requires more memory storage as
compared to linear iteration schemes [30]. However, it has
the great advantage of having a rate of convergence practi-
cally insensitive to the initial guess. However, a good initial
guess reduces considerably the number of iterations to
obtain sufficient accuracy. In addition, as in iterative
schemes, the round-off errors are confined in the final step
of the solution, regardless of the condition number! of the
matrix [L]. Consequently, the method is also well suited
for ill-conditioned matrices. The round-off error can even-
tually be reduced if the ith residual is computed by y —[ L]&
rather than (21). However, more computer time is required
in this case.

The application of the conjugate gradient method for
electromagnetic problems was originated by Sarkar ez al.
for wire antenna scattering [31]. Solutions exhibit fast
convergence. More recently, the problem of induced fields
in lossy dielectric cylinders was investigated [32]. The ma-
trix system resulting from a point-matching procedure was
iteratively solved by the conjugate gradient method.
Successive increases of the number of subsections were
used to achieve a faster convergence. The order of the
system that could be solved was considerably increased as
compared with the direct method of solving matrix sys-
tems.

n

B. The Pseudoinverse

It was previously pointed out that if one wants to use the
redundant data technique, the resulting system is over
determined and, consequently, the least-squares techniques
are necessary. These are generally classified into two cate-
gories, namely, unconstrained and constrained techniques.
This section deals with a constrained least-squares method
which has been proved to successfully handle ill-condi-

1The condition number of a matrix is defined as the ratio of its highest
and its lowest eigenvalue.
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tioned problems, in various disciplines such as optics [33],
image processing [34], and inverse scattering [18], namely,
the pseudoinverse.

Consider the matrix equation (17) in which [L] is the
matrix of a bounded operator. Rather than solving directly
(17), an estimate & is generated such that the norm of the
residual produced by this estimate is minimum. Simulta-
neously, the norm of the estimate is constrained to be
minimum. This can be written as follows:

Among alld which minimize | y —[L]d||
(23)
find the particular one which possesses the smallest
norm.

The pseudoinverse generates a unique solution for (17)
with the constraint (23) even if [ L] is singular [35].

A vector space approach is utilized to give a description
of the pseudoinverse operation. Let L® be the adjoint
operator of L. Now, consider the nullspace of L generated
by the solutions of the homogeneous equation [ L]a = 0. If
L is not onto nor one-to-one, ¥ does not belong to the
range of L. The orthogonal projection y, of ¥ onto the
range of L yields a minimum norm of the residual error
¥ — ¥,. The set of vector &,, which satisfies min (||y — 7)),
can be found by solving the system

[L]d, =7,
in which [ L] is the matrix associated with the operator L.
There are, generally, an infinite number of vectors which
satisfy (24). The constraint of minimum norm determines
the unique pseudoinverse solution. Using the adjoint oper-
ator of L, it can be shown that the minimum norm vector
is found by the orthogonal projection of the d, onto the
range of L“ [35]. This is a consequence of the orthogonality
between the nullspace of L and the range of L%

Different techniques have been proposed for determin-
ing the pseudoinverse of a matrix, among them an iterative
technique for sparse matrices [36]. For general applica-
tions, the mathematical description of a projection method
is given in [37]. Here, a modified version of the projection
method is proposed. It comprises a Gram—Schmidt ortho-
gonalization procedure with pivoting, in order to minimize
round-off error propagation. Indeed, when two nearly equal
vectors are substracted, the error is likely to be significant
in both magnitude and direction. Thus, the Gram-Schmidt
procedure applied to nearly dependent vectors invariably
results in substractions of nearly equal vectors. Error prop-
agation can be avoided if the vectors with relatively small
norm are not used until the end of the procedure.

Let {;,7,---1y} be the set of vectors corresponding to
the column of [L] associated with the operator L. The
following procedure is recommended for orthogonalizing.

(24)

1) Begin with the vector of the largest norm, say, 7k
(pivot vector).
i) Make all other vectors orthogonal to it using

-

=TT o)

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-33, NO. 10, OCTOBER 1985

ii1) From the now modified vectors, choose the vector
of the largest norm, say, /,,, (the second pivot
vector). .
iv) Make all other vectors (excluding /, ) orthogonal to
it using (25).
v) Repeat iii) and iv) until the search for a new /, finds
no vectors whose norm is above a certain threshold.

In order to keep a record of the operations on the
column of [L], (25) is applied at each step on the column
vectors of a identity matrix [I].

At this stage, the matrices [L] and [/] have been trans-
formed to new matrices [ B] and [Q], respectively

Since [Q] records the operations performed on [ L], one has

[L]lle]=[B]. (26)
Consequently, {§,,.1 - - gn} 18 a basis for the nullspace of
[L] It is, then, orthogonalized with the same procedure
described before. In addition, the set {7;, 72 ---1,} forms
an orthogonal basis for the range of L. Consequently, the
projection of ¥ onto the range of L can be written as

y,=[Bla=[L][Q]d (27)
with

a;=(FLy/ILIP  i<m (28)

a =0, i>m.

By virtue of (27), the solution of [L]&, = ¥, is clearly

d,=[Q]a. (29)

-Only the orthogonal projection of the solutions of (29)

onto the range of L? remains to be carried out. The set of
vectors {§,,.1,Gmsa ' 4y} constitutes a basis for the
orthogonal complement of the range of L¢ by virtue of the
decomposition theorem [35]. Consequently, the pseudoin-
verse solution is found by the vector orthogonal to the
nullspace of L, which is given by
N 5 g
g=d,- ¥ (@.gy/0a10q. (0
i=m+1
It can be noticed that the second term of the right-hand
side of (30) represents the orthogonal projection of the
vector given by (24) onto the nullspace of L.

The procedure described above is easily automated. The
sets {/,} and {4, } need to be orthogonalized only once for
a given problem. This is an advantage since most of the
computer time involved in the whole procedure takes place
during the Gram-Schmidt orthogonalization. Note that
the adjoint operator need not be determined in this ap-
proach. If the pseudoinverse is to be calculated, the input
vector is replaced by the standard basis vector for the
N-dimensional space and the procedure is repeated for the
N standard basis vectors yielding each time one column
vector of the pseudoinverse of [L]. The Gram-Schmidt
procedure has to be performed only once.
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In conclusion, the method just described is, by its sim-
plicity, very attractive. It has the disadvantage of requiring
N more memories than the conjugate gradient method. If
the matrix is N X N and has a low condition number, the
pseudoinverse is identical to the standard inverse. The
condition (23) prevails for ill-conditioned, over- or under-
determined systems. To prevent meaningless results, the
orthogonalization procedure must be interrupted when
the relative norm of the remaining column vectors of the
matrix [L] is too small. This is left to the judgment of the
user. Decreasing or increasing the number of g,’s may
severely affect the solution. Typical examples are il-
lustrated in [18].

IV. CoNcLuUsION

The goal of this paper was to familiarize the reader with
the principle-of numerical analysis of electromagnetic-field
problems. It was stressed that the success of obtaining
accurate numbers with the method of moments lies mostly
in the choice of basis functions. There is always a com-
promise to be made between the difficulty of computing
the inner scalar products involved in the procedure and the
size of the corresponding matrix equation. This is where
the skill of the person who wishes to use the method can be
a major factor yielding successful results.

It is felt that with the rapid development of computers,
numerical techniques are becoming increasingly popular
among engineers. The numerical methods can be applied
for design applications and simulations for antenna,
scattering, and transmission-line problems. The reader
should be aware that there exist other numerical methods
that are widely used in electromagnetic problems. They can
be more appropriate in certain situations. One refers to
finite-element and variational methods.

Two advanced numerical methods for solving equation
systems, namely, the conjugate gradient and pseudoinverse
method, were presented. They have the merit of being able
to handle ill-posed problems which can easily occur in
electromagnetic problems. Again, they are not the only
methods that have this feature, but they have an advantage
of being easily programmable. In addition, the pseudo-
inverse minimizes the norm of the solution which can be'of
practical interest in certain situations, such as for inverse
scattering problems.

It is unrealistic to believe that computer technology will
keep pace with problem-solving requirements. One has
reached the machine capabilities and the only hope is the
development of new algorithms.
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