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Abstract — This paper reviews one of the most important general meth-

ods for solving electromagnetic-field problems, namely, the moment method.

It begins with a brief mathematical foundation of the general method.

Then, the various specializations are described, accompanied with ~elevant

references to illustrate the pitfalls and shortcomings, as well as the ad-

vantages, as compared to other methods. Deterministic and eigenvalue

problems are both discussed separately. Fhrally, two advanced techniques

which have beerr found to be among the most efficient ones for solving

matrix equations resulting from the moment method, namely, the coujugate

gradient and the pseudo-inverse, are described. A versiou of their algorithm

which is easily programmable on computer is afso presented.

I. INTRODUCTION

w ITH THE EVER-INCREASING complexity of com-

munication systems, there has been a need for en-

gineers to predict the behavior of such systems by means of

computer simulations. As a result, the equations involved

in the mathematical description of electromagnetic quanti-

ties, which are of interest in most cases, have become more

complex. Consequently, more sophisticated numerical

methods have been developed to solve electromagnetic

problems.’ These methods are gaining greater and greater

success with the constant development of new powerful

digital computers.

A theory is meant to extrapolate observations in order to

make some prediction. As far as engineers are concerned, a

theory is relevant if it can produce numbers in a finite

number of steps performed in a reasonable period of time

and with sufficient accuracy, taking into account the fact

that computers have finite word length. Very elegant theo-

ries have been known for decades but had been useless for

engineers owing to the lack of appropriate numerical al-

gorithms to produce accurate numbers.

In recent years, most of those theories have received

renewed interest with the developments of powerful high-

speed computers which have made their numerical solu-
tions within reach. Simultaneously, more sophisticated al-

gorithms have been developed to obtain more accurate

numbers while decreasing the number of operations.

Generally, before producing numbers, two steps are nec-

essary. First, the original functional equations must be

transformed into structures (such as systems of equations)
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that can be handled by computers. Then, appropriate

techniques must be used to solve numerically the new form

of equations hence produced. The degrees of difficulty that

may be encountered in both steps are somehow interdepen-

dent. Indeed, if an efficient algorithm that transforms the

functional equations is found, the size of the systems to be

solved may be considerably decreased. However, efficient

algorithms may require more computer time to numerically

determine the various coefficients of the new form of

equations.

This paper is a critical inspection of a general method

used extensively in electromagnetic-field problems, namely,

the method of moments. Shortcomings and pitfalls of the

method will be discussed and some possible improvements

proposed. New methods which are gaining interest to solve

linear systems of equations that follow from the method of

moments will be outlined, as solutions to such systems are

an important step towards the production of numbers

which are, probably, of most interest for engineers.

This paper is intended as an introduction for those

totally unfamiliar with numerical methods, as well as for

those with some experience in the field. It was felt by the

author that it was more advisable to discuss the different

specializations of the general method of moments, rather

than to survey specific examples. Basic mathematical con-

cepts are introduced to provide some help for further

reading of the relevant literature. References found to be

most useful for the specific examples are listed in the

bibliography and the reader is urged to consult the papers

relevant to his or her interest.

II. METHOD OF MOMENTS

Most of the solutions to linear functional equations can

be interpreted in terms of projections onto subspaces of

functional spaces. For computational reasons, these sub-

spaces must be finite dimensional. For theoretical work,

they may be infinite dimensional. The idea of transforming

linear functional equations to linear matrix equations is

rather old. Galerkin, a Russian engineer, developed the

method, which carries his name, around 1920. It was a

specialization of the more general method of moments

which was presented later by R. F. Barrington in 1967 [1].

Most of the electromagnetic problems can be expressed

under the form of a linear functional equation. One gener-
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ally classifies electromagnetic problems in two categories,

namely, deterministic and eigenvalue problems. In the first

category, the linear functional equation enables one to

determine the electromagnetic quantity directly. In the

second category, parameters for which nontrivial solutions

exist are found first. Then, the corresponding solutions

called eigensolutions are determined. Both categories of

problems can be handled by the method of moments.

A. Deterministic Problems

First, consider a deterministic problem for which the

,corresponding functional is given by

L.f=y (1)

where L is any linear operator, f is the unknown function

to be determined, and y is the input also called the

excitation. The space spanned by all functions resulting

from the operation L is called the range of L. The set of

all functions on which L can operate define the domain

of L.

One needs an inner product ( ) associated with the

problem, which must satisfy

(U, U)=(U, U)*

(CYu+pu,f)= a(u,f)+j?(z.l,f)

(f>f)>o (2)

if(f, f)= Othenf=O

where a and ~ are scalars, ~, u, u any functions, and *

denotes the complex conjugate. For instance, a suitable

inner product for function spaces can be given by the

functional

(u, u)= juu”dil (3)
c1

The above integral is performed over any N-dimensional

subspace, depending on the application. Equation (3) is

called an unweighed or standard inner product and it

indicates a “projection” of u in the “direction” of u, from

which the similarity between vector and function space

becomes obvious. In some situations, one needs the a~oint

operator of L and its domain defined by

(Lf, y) = (f, Lay) (4)

for all f in the domain of L. An operator is se~-a~oint if

La= L and the domain of La is that of L. Self-adjointness

depends strongly on the associated boundary conditions

and also on the selection of an appropriate inner product.

For instance, self-adjointness is largely determined by the

boundary conditions in the case of differential operators

[2]. However, for integral operators, self-adjointness is as-

sured if the kernel of the integral possesses some symmetric

properties [3].

The operator L is said to be positive/negative definite if

(Lf, f)’~0 (5)

for any f # O in the domain of L. The properties of the

solution of (1) depend strongly on the properties of the

operator L. For instance, if the operator is positive defi-

nite, the solution of (1) is unique. Indeed, suppose that u

and u are two solutions of (1) such that L. u = y and

L cu = y. Then, by virtue of the linearity of L, w = u – u is

also a solution. Therefore, Lw = O, and, since L is positive

definite, w must be zero, yielding u = U.

Equations such as (1) can be analytically solved in a very

few cases. Most of the time, they require methods that

transform the original equation in the form of linear equa-

tion systems. The most well known are variational, finite

difference, and moment methods. The first two methods

are important, and, in certain cases, may have some ad-

vantage. However, for the sake. of consistency, they will not

be discussed here.

First of all, let us express the unknown function in terms

of basis or expansion functions & in the domain of L

f =~dj& (6)
N-”

The set of basis functions can be finite or infinite. In the

latter case, since in practical problems the summation must

be truncated, the solution will be an approximation of the

true solution. This is the case for orthogonal developments

such as Fourier series. Using the property of linearity of L,

(1) can now be written as

(7)
N

If a set of weighting or testing functions w, is chosen in

the range of the operator L and the inner product of both

sides of (7) is taken for each w,, the original functional

equation becomes a set of linear equations that can be

written in the matrix form

where

Lij= (wi, L~)

Y,= (w> Y) (8)

and

~=[a1,a2,...,~o.o. IT

in which T indicates transposition. If the matrix [L] is

regular, [L] – 1 exists, and the a,’s are given by

(9)

and the solution is found using (6). The moment method

can be interpreted as an error-minimization procedure with

the concept of linear spaces. Let R(L) be the range of the

operator L. The right-hand side of (8) is the orthogonal

projection of the subspace of R(L) spanned by the oper-

ation of L on the exact solution f, i.e., the y, onto the

subspace W spanned by the w, ‘s. The left-hand side of (8)
is the projection of the subspace spanned by the operations

L~ onto W. The moment method equates these two projec-

tions (see Fig. 1). Since the error (also called weighted

residual) is orthogonal to the projection, it is of the second

order and, consequently, the method is an error-minimiza-

tion procedure.
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Fig. 1. Illustration of the method of moments in the function space.

There are infinitely many possible sets of basis and

weighting functions. The most important task of the en-

gineer for any particular problem is the selection of an

appropriate set of ~.’s and Wi‘s. Although the choice of

these functions is specific to each problem, one can state

rules that can be applied generally to optimize the chance

of success by obtaining accurate results in a minimum time

and computer memory storage. First of all, they should

form a set of linearly independent functions. Second, using

(6), the ~’s should approximate the (expected) function f

reasonably well. Finally, the Wj’s should be in R(L) and so

chosen that the inner products (wi, y) depend on rela-

tively independent properties of y. Some additional factors

may influence the selection, such as

i) the desired accuracy of the solution,

ii) the size of the matrix [L] to be inverted,

iii) the realization of a well-behaved matrix [L],

iv) the ease of evaluating of the inner products.

The various selections of the Wi’s lead to the different

specializations of the moment method.

1) Galerkin’s Method: In cases where the domain of L is

identical to the domain of L“, one can select Wi = ~., which

leads to the well-known Galerkin’s method. For self-

adjoint operators, the condition is automatically met and

they are best suited for” this method because, according to

(4), the resulting matrix [L] is symmetrical. This may have

some numerical advantage for solving the corresponding

linear system of equations. However, the elements of the

matrix [L] can be more difficult to evaluate than in other

methods. This may outweigh the advantage of having a
symmetric matrix [L].

The Galerkin’s method has been used extensively in

electromagnetic problems. Numerous examples of applica-

tion are given in [4]. This method has been found to yield

accurate results with rapid convergence, as compared to

others, in the case of low-order solutions, i.e., when few

expansion functions are required.

Galerkin’s method is also involved in a new method

which is gaining interest in transmission-line problems,

namely, the spectral-domain method [5]. In this approach,

the coupled integral equations, relating field and current,

which typically appear in the space domain, are expressed

in the spectral domain via Fourier transform. As a result,

the original equations are transformed into algebraic equa-

tions id con~olutions into simple products. ‘The app~ca-

tion of the boundary conditions yields a system of linear

algebraic equations relating the Fourier transform of both

unknowns, respectively, the electric field at dielectric inter-

face, and the current densities in the conducting strips.

Finally, the application of the Galerkin’s method in the

spectral domain produces an homogeneous eigenvalue ma-

trix equation. Equating the determinant of the matrix to

zero leads to the solution of the propagation constants for

the dominant and higher order modes [6].

2) Subsection and Point-Matching Method: For higher

order solutions, i.e., when a large number of expansion

functions is required to approximate the unknown func-

tion, there may be a certain advantage in using weighting

functions that render the inner products, involved in the

moment method, easy to determine. This is achieved by

choosing the Wi’s equal to Dirac’s functions. Indeed, by

virtue of the property of this function, the inner product

which involves an integral in the function spaces, becomes

trivial. This specialization of the moment method is called

the point matching or collocation method. The elements of

the matrix [L] and the vector j, hence, become

(lo)

This is equivalent to enforce (7) at various points of

interest, generally where boundary conditions must be met.

The main advantage of this method resides in the ease with

which the matrix elements are computed as compared to

other specializations of the moment method. The major

disadvantage is that for low-order solutions, the accuracy

and the convergence of the solution generally depend on

the location of the points at which (7) is matched (see, for

example, [7]). For higher order solutions, Galerkin’s method

has been found to give better results and faster conver-

gence in the majority of cases. However, equidistant points,

in this case, give satisfactory results for the point-matching

method.

Another important aspect is that the point-matching

method has been proved inaccurate when the operations

Lt. yield symbolic functions such as Dirac’s functio&. This

can be explained by the fact that the inner product of two

distributions such as Dirac’s functions is not defined [8].
On the other hand, integral operators do not produce such

functions for practical problems. Consequently, they are

better suited to be used with the point-matching method. A

typical illustration is found in [9] in which the method is

used for finding scattering fields produced by infinitely

long dielectric cylinders with transverse magnetic irradia-

tion. The operator is integral and the method yields excel-

lent results. On the other hand, for transverse electric

irradiation, the operator involved is integro-differential

and, since pulse functions as basis are used, the results are

less accurate [10].

For problems lacking symmetry, it is difficult to find

basis functions that are defined over the entire domain of

the solution, and they would imply rather involved calcula-
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Fig. 2. Examples of subsectional basis and corresponding approximated
function.

tions of the inner products. Consequently, it is more judi-

cious to approximate the solution by basis functions which

are defined only over subsections of the domain of ~. The

point-matching method is often used in conjunction with

the subsectional basis. The main advantage is a certain

facility to compute the elements of the matrix [L] provided

that the basis function be simple. For instance, the un-

known function can be approximated using step or triangu-

lar functions (see Fig. 2). Care must be taken regarding the

subsectional basis. The basis functions y should be in the

domain of the operator L. In addition, the point-matching

procedure should not be used if the operation of L on the

~‘s yields symbolic functions, for reasons stated before.

For instance, step functions should not be used at all when

second-order differential operators are involved. Also, they

should not be used for first-order differential operators if

point-matching is intended.

The method would be very limited if such simple basis

functions could not be used for this type of operators,

which are often encountered in electromagnetic problems.

Fortunately, the differential operators can always be ap-

proximated using a finite-difference procedure which is

discussed in the next section. Another possibility is to

extend the original domain of the operator such that it can

operate on a wider class of functions without changing the

operation in the original domain [4]. For problems involv-

ing integral operators, the method yields reasonably good

results. However, the advantage inherent to the method

described above can be outweighed by the size of the

system. Indeed, in order to approximate the solution rea-

sonably well, a rather large number of subsections is neces-

sary. Consequently, the method is difficult to be applied in

cases for which the wavelength is relatively short as com-

pared to the dimension of the problem.

Many applications that use point-matching in conjunc-

tion with the subsection method can be found in the

literature [4], [11] -[14]. They most frequently deal with

scattering problems. For instance, an interesting compmi-

son between Galerkin’s and the point-matching methods

for different choices of basis functions can be found in [11]

for microstrip antenna problems. It is found that triangular

expansions do not give significant improvement as com-

pared to pulse functions. Three-dimensional problems can

also be approached with the point-matching and subsec-

tion methods [12]. The electric field is expended by 3-D

pulses (block model) inside lossy dielectric bodies and

point-matching is applied within each subvolume. The

method is limited to relatively low frequencies. Surface

patch models of conducting objects are proposed in [13] for

determining scattering fields of metallic objects with arbi-

trary shape. The use of triangular patches circumvents the

existence of a fictitious line or point of charges at the edges

,of the subsections [14]. Indeed, by virtue of the continuity

equation, line or point charges may appear at the limit of

subsections if rectangular pulses are used for current ex-

pansion. Potential and field are not defined at those loca-

tions, and anomalies or inconsistencies usually appear in

the solution. Point-matching used with appropriate basis

functions can significantly decrease the order of the system

to be solved. Hagman et al. [15] proposed a plane-wave

correction for scattering problems. The order of the matrix

is reduced by one order of magnitude as compared with

simple pulse functions presented in [9]. However, the com-

putations of the matrix elements are much more involved.

There are various techniques which have been proposed

to improve the point-matching and subsection methods.

For instance, in inverse scattering problems, it has been

found that the solution is highly sensitive to the points of

match [16]. In addition, the problem was found to be

ill-posed. One possibility y to rendel the solutions more

accurate and less sensitive to the location of the matching
points is to use least-square techniques [17]. Some con-

straints are enforced on the solution, and fairly good

solutions are obtained even in the presence of realistic

levels of noise in the input function of the integral equa-

tion. Another possibility is to match the equation at a

larger number of points than required by the number of

unknowns and to use least-squares optimization techniques
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to solve the matrix equation [18]. A theoretical treatment of

the so-called overdetermined collocation can be found in

[19].

3) Approximate Operators: It is sometimes convenient to

approximate the operator L. For instance, differential op-

erators can be replaced by finite-difference operators [2],

[4], [20]. This procedure is very useful for point-matching

since it allows one to use discontinuous basis functions,

such as pulses, for problems involving differential oper-

ators. The major inconvenience with the finite-difference

approximation is that, for a given approximation of the

operator, the solution does not converge when the distance

between the mesh nodes decreases. In fact, the correspond-

ing matrix becomes singular [21]. One possibility to obtain

a faster convergence and better accuracy without increas-

ing the number of meshes is to retain higher order terms in

the finite-difference approximation. This automatically im-

plies more computation for the matrix elements. In practi-

cal problems, it is convenient to make the nodes coincide

with the boundaries on which the potential and its deriva-

tive are known. To achieve this, mesh refinement is re-

quired to a level at which the approximation of the

boundaries does not affect the solution. Another way is to

use irregularly spaced nodes [21], [22].

For integral operators, it is sometimes more convenient

to approximate the Kernel of the integral operator [23],

[24] so that analytical integration can take place. If this

cannot be done, since the elements of [L] generally involve

the integral of Green’s functions which behave poorly at

the origin, numerical methods of integrations such as sin-

gularity extraction or statistical Riemann method of in-

tegration are necessary to evaluate the diagonal matrix

elements. These methods are time consuming if a signifi-

cant number of points are required, and eventually will not

converge. They will not be discussed here.

4) Other Specializations: There are other selections of

w,’s and &‘s which have been used. For instance, step

functions for testing and triangular functions for expansion

functions were used for microstrip antenna problems [11].

Results showed that no significant improvement can be

observed as compared to Galerkin’s method in which pulses

were used for testing and expansion. Therefore, it is not

always judicious to use more elaborate basis functions

because the computations of the matrix elements may

introduce more errors and require more computer time.

Among other possibilities, choosing w, = L~ yields the

method of the minimum residual called more commonly

the least-squares method. It can be readily seen from Fig. 1

that the error vector (residual) has a minim~m norm when

it is orthogonal to the space spanned by the L~ ‘s.

B. Eigenvalue Problems

An eigenvalue equation is an homogeneous equation

which can be written in the general linear case as

Lf = AMf (11)

where L and M are linear operators, A solution of (11)

exists only for particular values of A called eigenvalues,

associated with the corresponding solutions called ei-

genfunctions, eigenvectors, or eigensolutions. The method

of moments transforms (11) to a matrix eigenvalue equa-

tion that can be solved by appropriate methods. Eigenvalue

problems are important in electromagnetic. Indeed, the

eigenvalues correspond to physical quantities which are of

major importance for engineers, such as cutoff or reso-

nance frequencies of a system. However, the numerical

solution of the matrix eigenvalue equations is, in general,

more complicated than that for deterministic matrix equa-

tions. Iterative schemes such as Jacobi method are most

commonly used [25].

Using the same procedures as described for deterministic

equations, (11) can be written as

~a,Lf, =~~a,Mfi (12)

N N

where the fi.’s are in the domain of the operators L and M.

In a similar manner, a set of weighting functions W, is

chosen in the range of L and M and the inner product of

(12) is taken for each WI yielding the matrix system

[L]d=A[M]d (13)

where

mij= (w,, Mfi).

The above system can have a nontrivial solution only if

detl[L]– AIM]l=O. (14)

The determinant (14) is a polynomial in which roots

A1, A2,..., correspond to the eigenvalues of the matrix

equation (13). They approximate the eigenvalues of the

original functional equation (11). The corresponding vec-

tors with coefficients al., az~, . . . . are the eigenvectors of

the matrix equation (13) and

f.= E%A (15)
N

approximates each eigenvector of the original functional

equation (11).

If M possesses an inverse, (11) can be written in the

canonical form

M-’Lf = ~f. (16)

Thus, the matrix [L] must be multiplied by [M] -1 before

applying the method of solutions for eigenvalue matrix

equations, It is worth noticing that if M and M– 1 are the

identity operators in (11) and (16), [M] – 1 is not the

identity matrix in (13) and (14). Indeed, the elements of

[M] involve the scalar product of the weighting functions

and the basis functions.

A judicious choice of w,’s is to select W,= ~ (Galerkin’s

procedure). It has been found that Galerkm’s solutions

give eigenvalues higher than the exact values for second-

order differential operators, while they give smaller ei-

genvalues for first-order differential operators [4]. Like

deterministic problems, it is sometimes convenient to ex-

tend the operator. However, when this is applied to ei-

genvalue problems, extraneous eigenvalues appear if the
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basis functions associated with the extended operator

violate the boundary conditions of the problem. For-

tunately, there are several factors which make extraneous

eigenvalues easily recognizable. First of all, they do not

converge like the other eigenvalues. Then, even if the

original operator is positive definite, they may have nega-

tive values because the extended operator is not necessarily

positive definite and, finally, the corresponding eigenvec-

tors tend to be irregular and do not generate eigenfunc-

tions which respect the boundary conditions of the prob-

lem.

111. NEW METHODS FOR SOLVING MATRIX

EQUATIONS

The generation of a linear matrix equation by using any

specialization of the moment method is only a step towards

the production of numbers which are of most interest for

engineers. The last, but not necessarily the least, task is to

solve numerically the matrix equation. For small-order

well-conditioned systems, classical techniques such as

Gauss, diagonal decomposition, and linear iterative tech-

niques are efficient in the majority of cases. They are

discussed in great detail in the literature [26], [27] and will

not be surveyed here. For large systems, the classical

schemes may not yield fast convergence or sufficient accu-

racy. In addition, if the matrix is ill-conditioned (as, for

instance, in the point-matching method), more appropriate

techniques must be applied. Finally, if the system is over-

determined because of the application of redundant data

technique, the least-squares techniques must be used.

There are two methods for solving linear equation sys-

tems that result from the application of the moment method

which are becoming increasingly popular among re-

searchers in electromagnetic, namely, the conjugate gradi-

ent method and the pseudo-inverse technique. The reasons

are the facility with which they can be implemented on a

computer and their capability of handling ill-posed prob-

lems.

A. The Conjugate Gradient Method

Consider the following matrix equation which may result

from the application of the moment method:

[L]ii=j (17)

where the above quantities were defined before. It can be

shown [28] that an iterative method, called conjugate gradi-

ent method, can produce the desired solution usually in a

number of steps less than the order of the matrix [L]. The

conjugate gradient method is similar to the steepest descent

which involves the search for the minimum of a functional

in a direction suggested by its negative gradient. A rigorous

mathematical treatment of the method can be found in

[29]. The conjugate gradient is a nonlinear iterative method,

i.e., the new estimate is not a linear function of the past

estimate.

The method starts with an initial guess that generates the

first residual vector given by

?o=[L]iio-j (18)

and the direction vector

(19)

where [%]* is the transposed complex conjugate of [L].

Then, the successive iterative steps are given by

Fin+l =iin+tn Jn (20)

where

,n= II[W112
ll[L]~nlt2

(21)

(22)

where

~n= II[U*Z+I112
II[U*Z112

in which II . II indicates the norm.

The conjugate gradient requires more memory storage as

compared to linear iteration schemes [30]. However, it has

the great advantage of having a rate of convergence practi-

cally insensitive to the initial guess. However, a good initial

guess reduces considerably the number of iterations to

obtain sufficient accuracy. In addition, as in iterative

schemes, the round-off errors are confined in the final step

of the solution, regardless of the condition numberl of the

matrix [L]. Consequently, the method is also well suited

for ill-conditioned matrices. The round-off error can even-

tually be reduced if the ith residual is computed by ~ – [L]ii

rather than (21). However, more computer time is required

in this case.

The application of the conjugate gradient method for

electromagnetic problems was originated by Sarkar et al.

for wire antenna scattering [31]. Solutions exhibit fast

convergence. More recently, the problem of induced fields

in lossy dielectric cylinders was investigated [32]. The ma-

trix system resulting from a point-matching procedure was

iteratively solved by the conjugate gradient method.

Successive increases of the number of subsections were

used to achieve a faster convergence. The order of the

system that could be solved was considerably increased as

compared with the direct method of solving matrix sys-

tems.

B. The Pseudoinverse

It was previously pointed out that if one wants to use the

redundant data technique, the resulting system is over

determined and, consequently, the least-squares techniques
are necessary. These are generally classified into two cate-

gories, namely, unconstrained and constrained techniques.

This section deals with a constrained least-squares method

which has been proved to successfully handle ill-condi-

1The condition number of a matrix is defined as the ratio of its highest
and its lowest eigenvalue.
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tioned problems, in various disciplines such as optics [33],
image processing [34], and inverse scattering [18], namely,

the pseudoinverse.

Consider the matrix equation (17) in which [L] is the

matrix of a bounded operator. Rather than solving directly

(17), an estimate ii, is generated such that the norm of the

residual produced by this estimate is minimum. Simulta-

neously, the norm of the estimate is constrained to be

minimum. This can be written as follows:

Among alliiewhich minimize IIj – [ L ] till

(23)

find the particular one which possesses the smallest

norm.

The pseudoinverse generates a unique solution for (17)

with the constraint (23) even if [L] is singular [35].

A vector space approach is utilized to give a description

of the pseudoinverse operation. Let La be the adjoint

operator of L. Now, consider the nullspace of L gener~ted

by the solutions of the homogeneous equation [L]d= O. If

L is not onto nor one-to-one, j does not belong to the

range of L. The orthogonal projection 7P of ~ onto the

range of L yields a minimum norm of the residual error

~ – 7P. The set of vector ii=, which satisfies min (I1~ – ~P\l),

can be found by solving the system

[L]de=~P (24)

in which [L] is the matrix associated with the operator L.

There are, generally, an infinite number of vectors which

satisfy (24). The constraint of minimum norm determines

the unique pseudoinverse solution. Using the adjoint oper-

ator of L, itcan be shown that the minimum norm vector

is found by the orthogonal projection of the d, onto the

range of La [35]. This is a consequence of the orthogonality

between the nullspace of L and the range of La.

Different techniques have been proposed for determin-

ing the pseudoinverse of a matrix, among them an iterative

technique for sparse matrices [36]. For general applica-

tions, the mathematical description of a projection method

is given in [37]. Here, a modified version of the projection

method is proposed. It comprises a Gram–Schmidt ortho-

gonalization procedure with pivoting, in order to minimize

round-off error propagation. Indeed, when two nearly equal

vectors are subtracted, the error is likely to be significant

in both magnitude and direction. Thus, the Gram-Schmidt
procedure applied to nearly dependent vectors invariably

results in subtractions of nearly equal vectors. Error prop-

agation can be avoided if the vectors with relatively small

norm are not used until the end of the procedure.

Let {~,~z . . . ~j } be the set of vectors corresponding to

the column of [L] associated with the operator L. The

following procedure is recommended for orthogonalizing.

i) Begin with the vector of the largest norm, say, ~

(pivot vector).

ii) Make all other vectors orthogonal to it using

zz=~-((~,rk)ll~kllz)!k. (25)

iii) From the now modified vectors, choose the vector

of the largest norm, say, [1+~ (the second pivot

vector).

iv) Make all other vectors (excluding ~~) orthogonal to

it using (25).

v) Repeat iii) and iv) until the search for a new ~, finds

no vectors whose norm is above a certain threshold.

In order to keep a record of the operations on the

column of [L], (25) is applied at each step on the column

vectors of a identity matrix [1].

At this stage, the matrices [L] and [1] have been trans-

formed to new matrices [B] and [Q], respectively

[L] [~1,~2.../~ ~ d,~...d] _[B]
+ __________ ———— ———

[1] [~l,~,. . . ~~~-~::l-.~ . ~~] - [Q] “

Since [Q] records the operations performed on [L], one has

[L][Q]= [B]. (26)

Consequently, { ~~+1 “ “ - ?~ } is a basis for the nullspace of
[L]. It is, then, orthogonalized with t~e >ame procedure

described before. In addition, the set {11, lZ . . . ~~ } forms

an orthogonal basis for the range of L. Consequently, the

projection of ~ onto the range of L can be written as

~=[B]Z=[L][Q]Z (27)

with

%=(7> 0/ll!t112, i~m (28)

a, = o, i>m.

By virtue of (27), the solution of [L]d’~ = ~P is clearly

d,= [Q]ii. (29)

Only the orthogonal projection of the solutions of (29)

onto the range of L“ remains to be carried out. The set of
++

vectors { q~+l, qm+2 -” . ~N } constitutes a basis for the

orthogonal complement of the range of La by virtue of the

decomposition theorem [35]. Consequently, the pseudoin-

verse solution is found by the vector orthogonal to the

nullspace of L, which is given by

It can be noticed that the second term of the right-hand

side of (30) represents the orthogonal projection of the
vector given by (24) onto the nullspace of L.

The procedure described above is easily automated. The

sets { ~ } and { ~1} need to be orthogonalized only once for
a given problem. This is an advantage since most of the

computer time involved in the whole procedure takes place

during the Gram-Schmidt orthogonalization. Note that

the adjoint operator need not be determined in this ap-

proach. If the pseudoinverse is to be calculated, the input

vector is replaced by the standard basis vector for the
N-dimensional space and the procedure is repeated for the

N standard basis vectors yielding each time one column

vector of the pseudoinverse of [L]. The Gram–Schmidt

procedure has to be performed only once.
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In conclusion, the method just described is, by its sim-

plicity, very attractive. It has the disadvantage of requiring

N more memories than the conjugate gradient method. If

the matrix is N x N and has a low condition number, the

pseudoinverse is identical to the standard inverse. The

condition (23) prevails for ill-conditioned, over- or under-

determined systems; To prevent meaningless results, the

orthogonalization procedure must be interrupted when

the relative norm of the remaining column vectors of the

matrix [L] is too small. This is left to the judgment of the

user. Decreasing or increasing the number of q,’s may

severely affect the solution. Typical examples are il-

lustrated in [18].

IV. CONCLUSION

The goal of this paper was to familiarize the reader with

the principleof numerical analysis of electromagnetic-field

problems. It was stressed that the success of obtaining

accurate numbers with the method of moments lies mostly

in the choice of basis functions. There is always a com-

promise to be made between the difficulty of computing

the inner scalar products involved in the procedure and the

size of the corresponding matrix equation. This is where

the skill of the person who wishes to use the method can be

a major factor yielding successful results.

It is felt that with the rapid development of computers,

numerical techniques are becoming increasingly popular

among engineers. The numerical methods can be applied

for design applications and simulations for antenna,

scattering, and transmission-line problems. The reader

should be aware that there exist other numerical methods

that are widely used in electromagnetic problems. They can

be more appropriate in certain situations. One refers to

finite-element and variational methods.

Two advanced numerical methods for solving equation

systems, namely, the conjugate gradient and pseudoinverse

method, were presented. They have the merit of being able

to handle ill-posed problems which can easily occur in

electromagnetic problems. Again, they are not the only

methods that have this feature, but they have an advantage

of being easily programmable. In addition, the pseudo-

inverse minimizes the norm of the solution which can be’ of

practical interest in certain situations, such as for inverse

scattering problems.

It is unrealistic to believe that computer technology will

keep pace with problem-solving requirements. One has

reached the machine capabilities and the only hope is the

development of new algorithms.

[1]

[2]

[3]

[4]

REFERENCES

R. F. Barrington, “Matrix methods for fields problems,” Proc.
IEEE, VO1. 55, PP. 136–149, Feb. 1967.

A. Wexler, “ Cc%putation of electromagnetic fields,” IEEE Trans.
Microwave Theoy Tech., vol. MTT-17, pp. 416-439, Aug. 1969.
B. H. McDonald, M. Friedman, and A. Wexler, “Variational sohr-
tion of integraf equations,” IEEE Trans. Microwave Theory Tech.,

vol. MIT-22, pp. 237–248, Mar. 1974.
R. F. Barrington, Field Commutation bv Moment Method. New
York: Macmifian, 1968. -

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[141

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

979

R. Mittra and T. Itoh, “A new technique for the anafysis of the
dispersion characteristics of microstnsr lines? IEEE Trans. Micro-
wa;e Theory Tech., vol. MTT-19, pp. 27–56; Jan. 1971.
L.-P. Schmidt and T. Itoh, “ Spectraf domain analysis of the domi-
narst and higher order modes in fin-lines,” IEEE Trans. Microwave

Theory Tech., vol. MTT-28, pp. 981-985, Sept. 1980.
M. Gex-Fabry, J. R. Mosis, and F. E. Gardiol, “Reflection and
radiation of an open-ended circular wavegnide: Application to
nondestructive measurement on materials,” Arch. Elek.

Ubertragang, vol. 33, no. 12, pp. 473-478, 1979.
M. Lighthill, Introduc~ion to Fourier A nafysis and Generalized Func-
tions. Cambridge: University Press, 1962.
J. H. Richmond, “Scattering by a dielectric cylinder of arbitrary
cross section shape,” IEEE Trans. Antennas Propagat., vol. AP-13,
pp. 334–341, Mar. 1965.
J. H. Richmond, “ TE wave scattering by a dielectric cylinder of
arbitrary cross section shape; IEEE Trans. A ntenna.s Propagat.,

vol. AP-14, pp. 460–464, Apr. 1966.
J. R. Mosis and R. E. Gardiol, “A dynarnicaf radiation model for
microstrip structures; Advances in Electronics and Electron Physics,
vol. 59, pp. 139–235, 1982.

D. E. Livesay and K. M. Chen, “Electromagnetic fields induced
inside arbitrary shaped biological bodies,” IEEE Trans. Microwaue
Theory Tech., vol. MTT-22, pp. 1273-1280, 1974.
N. N. Wang, J. H. Richmond, rmd M. C. Gilreath, “ Sinusodiaf
reaction formulation for radiation and scattering from conducting
surfaces,” IEEE Trans. Antennas Propagat., vol. AP-23, pp.
376–382, Mar. 1975.
A. W. Glisson and D. R. Wilton, “Simple and efficient numerical
methods for problems of electromagnetic radiation and scattering
from surfaces;’ IEEE Trans. Antennas Propagat., vol. AP-28, pp.
593-603, May 1980.
M. J. Hagmantt, O. P. Gandhi, and C. H. Durney, “Procedures for
improving convergence of moment-method solutions in electromag-
netic,” IEEE Trans. Antennas Propagat., vol. AP-26, pp. 743–748,
May 1978.
D. K. Ghodgaonkar, O. P. Gandhi, and M. J. Hagmann, “Estima-
tion of complex permittivities of three-dlmensionaf inhomogeneous
biological bodies,” IEEE Trans. Microwave Theory Tech., vol.
MTT-31, pp. M2-446, June 1983.
M. M. Ney, S. S. Stuchly, A. M. Smith, and M. Goldberg, “Electro-
magnetic imaging using moment methods,” in URSZ Int. Symp.
Dig. on Electromagnetic Theory (Santiago de Compostela, Spain),
1983, pp. 104-107.
M. M. Ney, A. M. Smith, and S. S. Stuchly, “A solution of
electromagnetic imaging using pseudoinverse traasforrnation,” IEEE

Trans. Medical Imagmg, vol. Ml-3, no. 4, pp. 155–162, Dec. 1984.
E. D. Eason, “A review of least-squares methods for solving partial
differential equations,” Int. Numerical Methods in Eng., vol. 10, pp.
1021-1046, 1976.
G. E. Forsythe and W. R. Wasow, Finite-Difference Methods for
Partial Differential Equa~ions. New York: Wiley, 1960.
Y. V. Vorbyev, Method of Moments in Applied Mathematics. New
York: Gordon& Breach, 1965.
M. G. Salvadori and M. L. Baron, Numerical Methods in Engineer-
ing. Englewood Cliffs, NJ: Prentice-Hall, 1964.
E. H. Newmau and P. Tulyathan, “Analysis of snicrostrip antennas
using moment methods: IEEE Trans. Antennas Propagat., vol.
AP-29, Pp. 47-53, 1981.
J. R. Mosig and F. E. Gardiol, “Anafyticaf and numericaf tech-
niques in the Green’s function treatment of microwave antennas
and scatterers,” Proc. Inst. Elec. Eng., pt. H (MOA), vol. 130, pp.
175-182.
P. J. Eberlein, “A Jacobi-like method for the automatic computa-
tion of eigenvahses aud eigenvectors of au arbitrasy matrix,” J.
SIAM, vol. 10, no. 1, pp. 74-88, 1962.
R. W. Hamming, Numerical Methods for Scientists and Engineers.
New York: McGraw-Hill, 1962.
J. R. Westlake, “A handbook of numericaf matrix inversion and
solution of linear equations. Eng[ewood-CI~fs, NJ! Prentice-Hall,

1968.

M. R. Hestenes and E. Stiefel, “Methods of conjugate gradients for
solving linear systems:’ J. Res. Nat. Bur. Stand., vol. 49, pp.
409-436, 1952.
M. Hestenes, Conjugate Direction Methods in Optlmlzatlon. New

York: Springer-Verlag, 1980.
T. K. Sarkar, K. R. Siarkiewicz, and R. F. Stratton, “Survey of
numencaf methods for solutions of large systems of linear equations



980

[31]

[32]

[33]

[34]

[35]

[36]

IEEE TRANSACTIONS” ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-33, NO. 10, OCTOBER 1985

for electromagnetic field problems;’ IEEE Trans. Antennas Propa-
ga~. vol. AP-29, pp. 847–856, June 1981.
T. K. Sarkar and S. M. Rae, “The application of the conjugate
gradient method for the solution of electromagnetic scattering from
arbitrary oriented wire antennas,” URSI Int. Symp. Dig. Electro-
magnetic Theo~ (Santiago de Compostela, Spain), 1983, pp. 93–96.
M. F. Sultan and R. Mittra, “An iterative moment method for
analyzing the electromagnetic field distribution inside inhomoge-
neous lossy dielectric objects,” IEEE Trans. Microwave Theoy

Tech., vol. M’lT-33, pp. 163–168, Feb. 1985.
R. Barakat and G. Newsam, “Numerically stable iterative method
for the inversion of wave-front aberrations from measured point-
spread-function data;’ J. Opt. Sot. Amer., vol. 70, no. 10, pp.
1255-1263, 1980,
W. K. Pratt and F. Davarian, ‘<Fast computational techniques for
pseudoinverse and Wiener image restoration,” IEEE Trans. Com-
put., vol. C-26, no. 6, pp. 571–580, 1977.
C. N. Domy, A Vector Space Approach to Models and Optimization.
Hunington, New York: R. E. Krieger, 1980.
A. Bjorck and T. Effving, “Accelerated projection methods for
computing pseudoinverse solutions of systems of linear equations,”
~. BIT, vol. 1.9, 10, pp. 145-163, 1979.

[37] K. Tanabe, “Projection method for solving a singular system of
linear equations ~d its applications,” Num;r. Ma;h., vo~. 17, pp.
203-214, 1971.

*

Michel M. Ney (S’83–M’83) was born in Payerne, .
Switzerland. in 1950. He received the errzineer
degree from the Swiss Federal Institute of ~ech-
nology of Lausanne, Switzerland, and the M. SC.
degree in electrical engineering from the Univer-
sity of Manitoba, Canada, in 1976 and 1978,
respectively.

During 1978 and 1979, he was with the
Laboratory of Electromagnetism and Acoustics
at the Swiss Federa3 Institute of Lausarme as a
Research Associate.

He joined the University of Ottawa, Canada, in 1979, where he com-
pleted his Ph.D. degree in 1983. Since that time, he has been with the
Department of Electrical Engineering of the University of Ottawa as an
Assistant Professor. His main research interests are electromagnetic en-
gineering and numerical methods.


